Maths Class 10 Notes for Surface Areas and Volumes

(A) RIGHT CIRCULAR CYLINDER:

A right circular cylinder is solid generated by the revolution of a rectangle about of its sides.
NOTE : If a paper, cylinder open at both the ends is cut along a vertical line on the curved surface and stretched on a plane surface, we obtain a rectangle of length i.e., $27 \pi \mathrm{r}$ and breadth $=$ Height of cylinder h.
So, curved surface area (C.S.A) or lateral surface area $=2 \pi r *$ height

Important Formula For Cylinder

1. C. S. A of cylinder $=($ Perimeter of base $) *$ Height $=2 \pi \mathrm{rh}$

2. Area of each end of cylinder $=2 \pi r^{2}$
3. Total surface area (including both circular ends) $=2 \pi r \mathrm{~h}+2 \pi \mathrm{r}^{2}=27 \pi \mathrm{r}(\mathrm{h}+\mathrm{r})$
4. Volume of cylinder $-\pi \mathrm{r}^{2} \mathrm{~h}=[($ Area of base $) *$ height $]$

Hollow Cylinder's formulae e.g., (Rubber tubes pipes, etc.)

1. Volume of material $=$ Exterior volume - Interior volume $=\pi R^{2} h-\pi r^{2} h=\pi h\left(R^{2}-r^{2}\right)$
2. C. S. A or L. S. A = external surface area + internal surface area

$=2 \pi \mathrm{Rh}+2 \pi \mathrm{rh}$
3. T. S . A. of hollow cylinder $=$ C. S. A+ 2 (area of base ring)
$=(2 \pi R h+2 \pi r h)+2\left(\pi R^{2}-\pi r^{2}\right)$

NOTE:

1. Two end faces of right circular cylinder are circles having each area $=\pi r^{2}$
2. Mass of cylinder $=$ Volume $*$ density
3. When rectangular sheet of paper is rolled along its length, we get a cylinder whose base circumference is length of sheet and height is same as breadth of sheet.

(B) CONE

From figure, $\mathrm{AO}=$ height of cone and is denoted by ' h '

$\mathrm{OB}=$ radius of the base of cone, $\mathrm{AB}=$ slant height of a cone (1)

Important Formula Of rt. Circular Cone :

1. Volume of cone $=1 / 3 \pi r^{2} h$
www.ncerthelp.com (Visit for all ncert solutions in text and videos, CBSE syllabus, note and many more)

2 C. S. A or L. S. A= π rl where slant height
$=1=\sqrt{ } r^{2}+h r^{2}$
3. T. S. A of cone $=\pi r l+\pi r^{2}$

(C) FRUSTUM OF A CONE

FRUSTUM : A cone is cut by a plane parallel to the base of the cone,

then the portion between the plane and base is called frustum of the cone

Important Formulae for Frustum :

1. Volume of frustum of cone
$=\pi \mathrm{h} / 3\left[\mathrm{R}^{2}+\mathrm{r}^{2}+\mathrm{Rr}\right]$ cubic unit
2. L. S. A or C. $S . A=\pi l(R+r) S q u n i t s$ where $l^{2}=h^{2}+(R-r)^{2}$
3. T. S. $A=\pi R^{2}+\pi r^{2}+\pi l(R+r)$ Sq. units.
(Area of base + Area of top + Area of lateral)
4. Slant height $(1)=\sqrt{ } h^{2} 2+(R-r)^{2}$
(D) IMPORTANT FORMULA FOR SPHERE AND HEW-SPHERE
(a) Surface area of sphere $=4 \pi r^{2}$

(b) Volume of sphere $=4 / 3 \pi r^{3}$
(c) Volume of hemisphere $=2 / 3 \pi r^{3}$
(d) C.S.A. of hemisphere $=2 \pi r^{2}$
(e) Total surface area of Hemi-sphere $=2 \pi r^{2}+\pi r^{2}=3 \pi r^{2}$
(E) IMPORTANT FORMULA FUR SPHERICAL SHELL/ HEMILSPHERICAL SHELL
(a) Outer surface area of spherical shell $=4 \pi R^{2}$
(b) Inner S.A. of spherical shell $=4 \pi r^{2}$
(c) Total surface area of spherical shell $=4 \pi\left(\mathrm{R}^{2}+\mathrm{r}^{2}\right)$
(d) Volume of spherical shell of external radius R and internal
radius ' r ' $=4 / 3 \pi\left(\mathrm{R}^{3}-\mathrm{r}^{3}\right)$
(e) Outer curved surface area hemispherical shell $=2 \pi R^{2}$

(f) Inner curved surface area of hemispherical shell $=2 \pi \mathrm{r}^{2}$
(g) Thick hemispherical bowl of external and internal radii R and r ,

Total S.A. $=\pi\left(3 \mathrm{R}^{2}+\mathrm{r}^{2}\right)$
www.ncerthelp.com (Visit for all ncert solutions in text and videos, CBSE syllabus, note and many more)

5|Page
(h) Volume of hemispherical shell of external radius ' R ' and internal radius ' r ' $=2 / 3 \pi\left(\mathrm{R}^{3}-\mathrm{r}^{2}\right)$.

